ÁNGULOS ENTRE VECTORES PROYECCIÓN

4.2 GROSSMAN – ED. 7

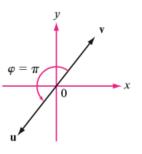
BLOQUE III. UNIDAD 7

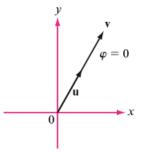
ÁNGULOS ENTRE VECTORES

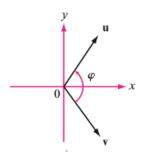
Definición 4.2.1

Ángulo entre vectores

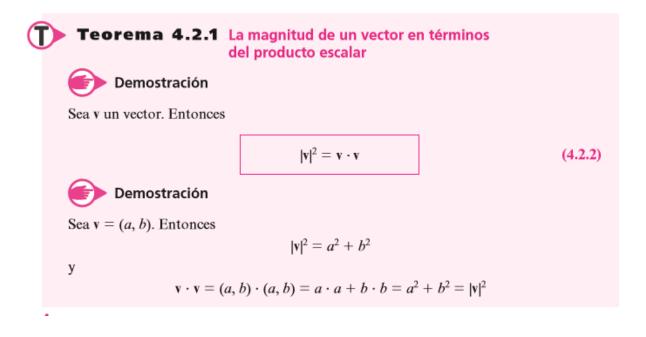
Sean \mathbf{u} y \mathbf{v} dos vectores diferentes de cero. Entonces el ángulo φ entre \mathbf{u} y \mathbf{v} está definido como el ángulo no negativo más pequeño[†] entre las representaciones de \mathbf{u} y \mathbf{v} que tienen el origen como punto inicial. Si $\mathbf{u} = \alpha \mathbf{v}$ para algún escalar α , entonces $\varphi = 0$ si $\alpha > 0$ y $\varphi = \pi$ si $\alpha < 0$.







Veamos un teorema que nos permitirá luego plantear una forma de calcular el ángulo entre dos vectores.



Aquí debemos recordar cómo está definido el producto punto (o escalar) de vectores.

CÁLCULO DEL ÁNGULO ENTRE VECTORES

Teorema 4.2.2

Sean \mathbf{u} y \mathbf{v} dos vectores diferentes de cero. Si φ es el ángulo entre ellos, entonces

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \tag{4.2.3}$$

Verifiquémoslo para un caso. u= (1, -2) v= (-3, 6)

LA DEMOSTRACIÓN

Sean \mathbf{u} y \mathbf{v} dos vectores diferentes de cero. Si $\boldsymbol{\phi}$ es el ángulo entre ellos, entonces $\mathbf{u} \cdot \mathbf{v}$

Demostración

La ley de los cosenos (vea el problema 3.4.10, página 223) establece que en el triángulo de la figura 4.12

$$c^2 = a^2 + b^2 - 2ab\cos C$$

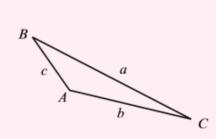


Figura 4.12
Triángulo con lados a, b y c.

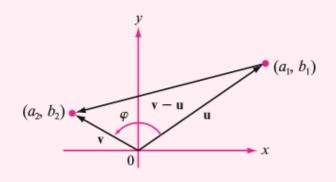


Figura 4.13
Triángulo con lados |u|, |v| y |v - u|.

Ahora se colocan las representaciones de \mathbf{u} y v con los puntos iniciales en el origen de manera que $\mathbf{u}=(a_1,b_1)$ y $\mathbf{v}=(a_2,b_2)$ (vea la figura 4.13). Entonces de la ley de los cosenos, $|\mathbf{v}-\mathbf{u}|^2=|\mathbf{v}|^2+|\mathbf{u}|^2-2|\mathbf{u}|\,|\mathbf{v}|\cos\varphi$. Pero

de (4.2.2) teorema 2.2.1 iii), página 64
$$|\mathbf{v} - \mathbf{u}|^2 = (\mathbf{v} - \mathbf{u}) \cdot (\mathbf{v} - \mathbf{u}) = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{u}$$

$$= |\mathbf{v}|^2 - 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{u}|^2$$

Así, después de restar $|\mathbf{v}|^2 + |\mathbf{u}|^2$ en ambos lados de la igualdad, se obtiene $-2\mathbf{u}\cdot\mathbf{v} = -2|\mathbf{u}|\,|\mathbf{v}|\cos\varphi$, y el teorema queda demostrado.

VECTORES PARALELOS

Vectores paralelos

Dos vectores diferentes de cero \mathbf{u} y \mathbf{v} son paralelos si el ángulo entre ellos es cero o π . Observe que los vectores paralelos tienen la misma dirección o direcciones opuestas.

Teorema 4.2.3

Si $\mathbf{u} \neq \mathbf{0}$, entonces $\mathbf{v} = \alpha \mathbf{u}$ para alguna constante α si y sólo si \mathbf{u} y v son paralelos.

VECTORES ORTOGONALES

Definición 4.2.3

Vectores ortogonales

Los vectores **u** y v diferentes de cero son ortogonales (o perpendiculares) si el ángulo entre ellos es $\frac{\pi}{2}$.

Teorema 4.2.4

Los vectores \mathbf{u} y \mathbf{v} diferentes de cero son ortogonales si y sólo si $\mathbf{u} \cdot \mathbf{v} = 0$.

¿Por qué?

-dato

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

Porque el coseno es 0 en $\frac{\pi}{2}$, esto es, cuando el ángulo es ortogonal.

Un ejemplo

EJEMPLO 4.2.3 Dos vectores ortogonales

Demuestre que los vectores $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$ y $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j}$ son ortogonales.

Solución $\mathbf{u} \cdot \mathbf{v} = 3 \cdot 4 - 4 \cdot 3 = 0$. Esto implica que $\cos \varphi = \frac{(\mathbf{u} \cdot \mathbf{v})}{(|\mathbf{u}||\mathbf{v}|)} = 0$, y como φ está en el intervalo $[0, \pi], \varphi = \frac{\pi}{2}$.

PROYECCIÓN

Lo analizamos gráficamente

Proyección

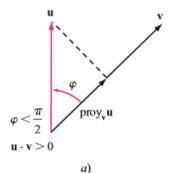
Sean u y v dos vectores diferentes de cero. Entonces la proyección de u sobre v es un vector denotado por proy, u, que se define por

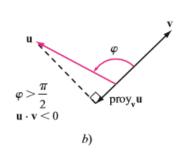
$$\operatorname{proy}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \tag{4.2.4}$$

La componente de u en la dirección de v es $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$, y es un escalar.

(4.2.5)

Observe que $\frac{v}{|v|}$ es un vector unitario en la dirección de v.

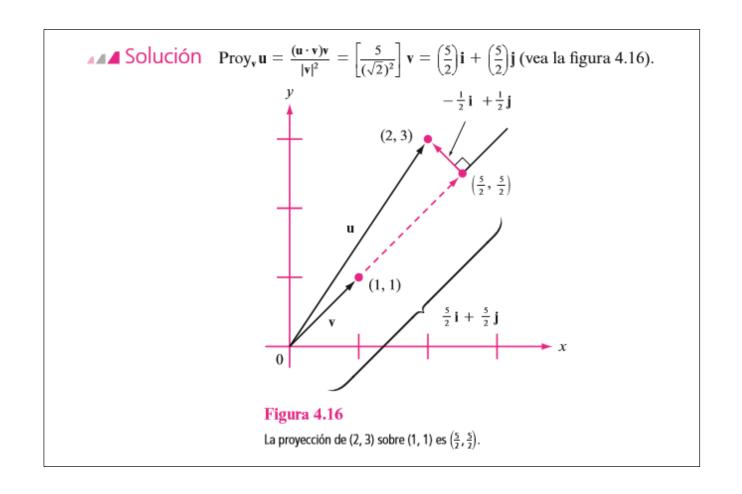




— Vemos un ejemplo

EJEMPLO 4.2.4 Cálculo de una proyección

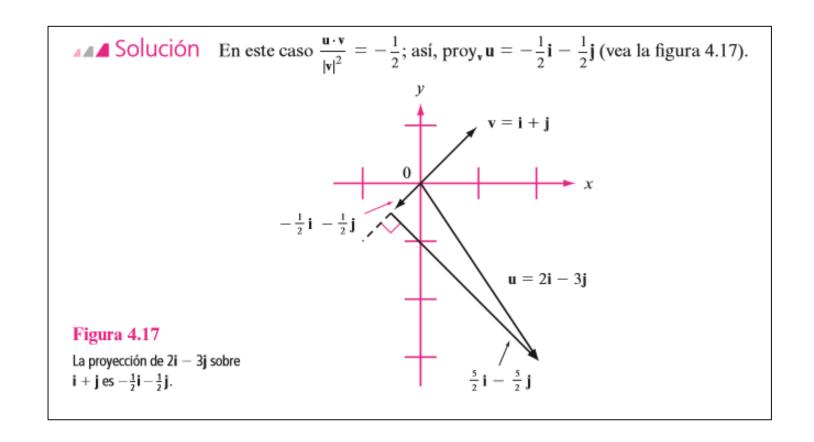
Sean $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} \mathbf{y} \mathbf{v} = \mathbf{i} + \mathbf{j}$. Calcule proy_v \mathbf{u} .



— Vemos otro ejemplo

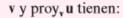
EJEMPLO 4.2.5 Cálculo de una proyección

Sean $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} \mathbf{y} \mathbf{v} = \mathbf{i} + \mathbf{j}$. Calcule proy_v \mathbf{u} .



Observación 1. De las figuras 4.14 y 4.15 y del hecho de que $\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$ se deduce que

4 observaciones para analizar



- i) la misma dirección si $\mathbf{u} \cdot \mathbf{v} > \mathbf{0}$ y
- ii) direcciones opuestas si $\mathbf{u} \cdot \mathbf{v} < \mathbf{0}$.

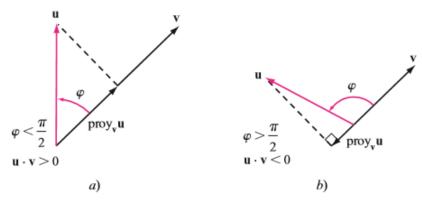


Figura 4.15

a) \mathbf{v} y proy_v \mathbf{u} tienen la misma dirección si $\mathbf{u} \cdot \mathbf{v} > 0$,

b) \mathbf{v} y proy, \mathbf{u} tienen direcciones opuestas si $\mathbf{u} \cdot \mathbf{v} < 0$.

Observación 2. Se puede pensar en la proy, u como la componente de v del vector u.

Observación 3. Si \mathbf{u} y \mathbf{v} son ortogonales, entonces $\mathbf{u} \cdot \mathbf{v} = 0$, de manera que proy $\mathbf{v} = \mathbf{u} = 0$.

Observación 4. Una definición alternativa de la proyección es: si \mathbf{u} y \mathbf{v} son vectores diferentes de cero, entonces proy $_{\mathbf{v}}\mathbf{u}$ es el único vector con las siguientes propiedades:

- i) proy_vu es paralelo a v.
- ii) u proy_vu es ortogonal a v. Ver teorema 4.2.5

Autoevaluación 4.2

- $\mathbf{I)} \ \mathbf{i} \cdot \mathbf{j} = \underline{\hspace{1cm}}.$
 - **a**) 1

b) $\sqrt{(0-1)^2+(1-0)^2}$

c) 0

d) i + j

- II) $(3,4)\cdot(3,2) =$ _____.

 - **a)** (3+3)(4+2) = 36 **b)** (3)(3) + (4)(2) = 17

 - c) (3-3)(2-4)=0d) (3)(3)-(4)(2)=1
- III) El coseno del ángulo entre $\mathbf{i} + \mathbf{j} \in \mathbf{i} \mathbf{j} \in \mathbf{i}$.

- **a)** 0i + 0j **b)** 0 **c)** $\sqrt{2}$ **d)** $\frac{1}{\sqrt{2+0}}$
- IV) Los vectores 2i 12j y 3i + $(\frac{1}{2})$ j son _____.
 - a) Ni paralelos ni ortogonales
- b) Paralelos

c) Ortogonales

- d) Idénticos
- **V)** Proy_wu = ______.

- a) $\frac{\mathbf{u} \cdot \mathbf{w}}{|\mathbf{w}|}$ b) $\frac{\mathbf{w}}{|\mathbf{w}|}$ c) $\frac{\mathbf{u} \cdot \mathbf{w} \cdot \mathbf{w}}{|\mathbf{w}| |\mathbf{w}|}$
- $\frac{\mathbf{d})}{|\mathbf{u}|} \frac{\mathbf{u} \cdot \mathbf{w} \, \mathbf{u}}{|\mathbf{u}|}$

Respuestas a la autoevaluación

- **I)** c)
- $\mathbf{II}(b)$ $\mathbf{III}(b)$
- **IV**) c)