

Lic. en Criminalística, Tec. en Balística, Tec. en Papiloscopía, Tec. en Documentología.

FÍSICA I

INGRESO AL AULA VIRTUAL

bit.ly/aulafisica1crimi

ESTRUCTURA DE LA CÁTEDRA

Clases teórico-prácticas Tres horas semanales

- ❖ Desarrollo de contenidos (Teoría)
- Resolución de Guías de Coloquio
- Resolución de Guías de Práctica

Evaluación

- Participación activa en clases
- Exámenes parciales
- ❖ Recuperatorios (últimas semanas de clases)

Acreditación de la Asignatura

- ❖ Promoción directa: al finalizar el cursado.
- Examen final: en llamados de mesas de examen.
 - Regulares:
 - ✓ Examen Teórico-Práctico escrito con nota mayor o igual a seis (6)
 - Libres:
 - ✓ Examen Teórico-Práctico escrito con nota mayor o igual a seis (6)

Condiciones de Regularidad

- ❖ Asistencia a clases: 80% (60% para estudiantes bajo el Régimen Especial de Cursado)
- Entrega del 100% de los informes y guías solicitados
- Aprobación con nota igual o mayor a seis (6) en todos los exámenes parciales y/o recuperatorios
- Quienes no cumplan con estas condiciones, quedarán en condición de "LIBRE"

Condiciones de Promoción Directa

- ❖ Asistencia a clases: 80% (60% para estudiantes bajo el Régimen Especial de Cursado)
- Entrega del 100% de los informes y guías solicitados
- ❖Aprobación con nota igual o mayor a siete (7) en todos los exámenes parciales y/o recuperatorios

PROGRAMA

BIBLIOGRAFÍA

- ❖ HEWITT, P. (2007). Física Conceptual. Décima Edición. Pearson Educación: México. ISBN: 978-970-26-0795-3
- ❖ SERWAY, R; JEWETT, J. (2009). Física para ciencias e ingeniería, con Física Moderna. Volumen 2. Séptima Edición. Cengage Learning: México.
- ❖ YOUNG, H.; FREEDMAN, R. (2009). Física universitaria, con Física Moderna. Volumen 2. Decimosegunda edición. Pearson Educación: México.

Introducción a la Física

¿Qué es? ¿Qué estudia?

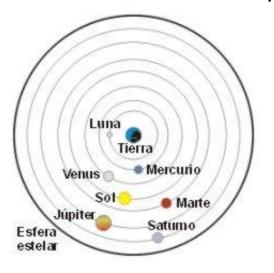
"Es una ciencia que pretende comprender CÓMO ocurren las cosas en el medio natural y POR QUÉ suceden así"

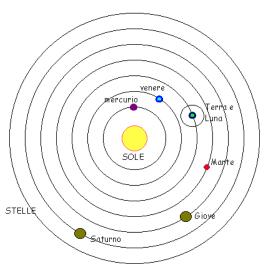
Introducción a la Física

Es una ciencia experimental, estudia el comportamiento de los fenómenos en estudio a partir de la OBSERVACIÓN

Necesita de la MEDICIÓN de las magnitudes para poder describir los fenómenos que estudia

La MATEMÁTICA es un herramienta necesaria para poder modelizar y predecir los fenómenos en estudio


Hace uso de MODELOS para predecir el comportamiento de dichos fenómenos


Los fenómenos son explicados a través de LEYES GENERALES

¿Qué es un Modelo?

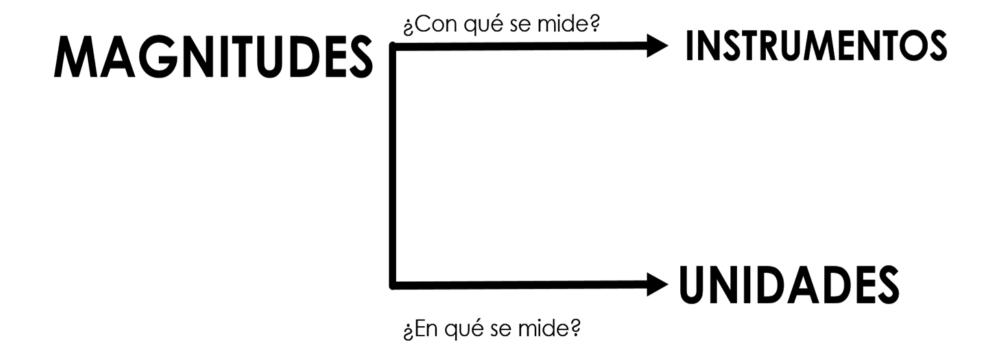
En Física y otras ciencias

Es el resultado del proceso de generar una representación abstracta, conceptual, gráfica o visual, de fenómenos, sistemas o procesos, a fin de analizar, describir, explicar o simular esos fenómenos o procesos.

Magnitudes y unidades

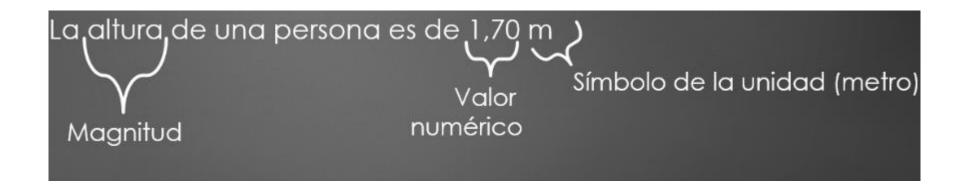
¿Qué es medir?

Se trata de comparar dos cantidades: una cantidad desconocida, con una que sí se conoce, para poder otorgarle un valor a la primera.


¿Qué se puede medir?

• Se pueden medir propiedades o características de algún sistema físico de interés.

 Si se utilizan medios objetivos para la medición, estas propiedades o características reciben el nombre de:


MAGNITUDES

Para determinar si una propiedad es una magnitud o no, se debería poder responder alguna de las siguientes dos preguntas

Unidades de medida

Son representaciones que acompañan al valor numérico de una medición.

Actividad 1

- a) Elijan un objeto y hagan una lista de sus propiedades.
- b) Indiquen cuáles de las propiedades mencionadas anteriormente son magnitudes y cuáles no.

SISTEMAS DE UNIDADES

- Sistema Internacional de Unidades (SI).
- Sistema Técnico de Unidades.
- Sistema Imperial, o Sistema de Ingeniería Británico.

Sistema Métrico Legal Argentino (SI.ME.L.A.)

• Ley N°19511 – marzo de 1972

 Nuestro país adopta el Sistema Internacional de Unidades

Unidades del SIMELA

(Sistema Métrico Legal Argentino)

Mognitud	Unidad		
Magnitud	Nombre	Símbolo	
Longitud	metro	m	
Masa	kilogramo	kg	
Tiempo	segundo	S	
Temperatura	kelvin	К	
Intensidad de Corriente Eléctrica	ampere	А	
Intensidad Luminosa	candela	cd	
Cantidad de Materia	mol	mol	

 Los símbolos de las unidades se escriben con minúsculas, excepto cuando provienen de un nombre propio.

Por ejemplo, la unidad de temperatura termodinámica **kelvin**, se escribe "K"; la unidad de longitud **metro**, se escribe "m".

 Si se escribe el nombre completo de la unidad, el mismo debe ir en minúscula.

Por ejemplo: 300kelvin.

 Los símbolos de las unidades no son abreviaturas, por lo que se escriben sin punto, y mantienen la misma forma para el singular y el plural.

Por ejemplo:

1m 34m

 Si se forma una unidad derivada a partir del producto entre dos unidades, sus nombres deben leerse de corrido, y sus símbolos pueden indicarse de cualquiera las siguientes maneras:

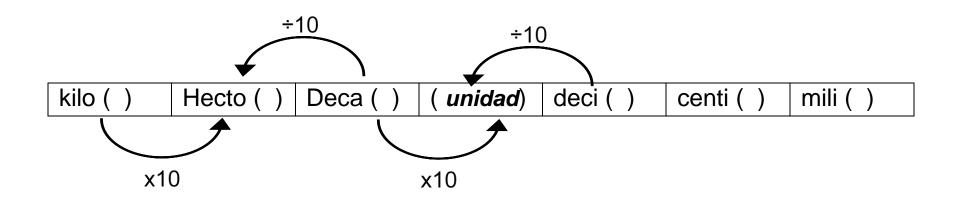
Producto entre unidades de fuerza y longitud:

N.m o N-m o Nm

debe leerse como "newton metro"

 Si se forma una unidad derivada a partir del cociente entre dos unidades, sus nombres deben leerse separados por la preposición "por", y sus símbolos pueden indicarse de cualquiera las siguientes maneras:

Cociente entre unidades de longitud y tiempo


$$m/_{s}$$
 o $m. s^{-1}$ o $\frac{m}{s}$

Debe leerse como "metros por segundo".

MÚLTIPLOS Y SUBMÚLTIPLOS DE UNIDADES

Unidades en sistema decimal

El uso de un sistema decimal permite la conversión de unidades de medida, utilizando como factor el número 10.

MÚLTIPLOS Y SUBMÚLTIPLOS DE UNIDADES

Unidades en sistema decimal

Múltiplos		Submúltiplos			
Prefijo	Símbolo	Factor	Prefijo	Símbolo	Factor
exa	Е	10 ¹⁸	deci	d	10 ⁻¹
peta	Р	10 ¹⁵	centi	С	10-2
tera	Т	10 ¹²	mili	m	10 ⁻³
giga	G	10 ⁹	micro	μ	10 ⁻⁶
mega	М	10 ⁶	nano	n	10 ⁻⁹
kilo	k	10 ³	pico	р	10 ⁻¹²
hecto	h	10 ²	femto	f	10 ⁻¹⁵
deca	da	10	atto	a	10 ⁻¹⁸

MÚLTIPLOS Y SUBMÚLTIPLOS DE UNIDADES

<u>Unidades en sistema decimal</u>

En la tabla anterior, se indican algunos prefijos utilizados para las unidades del Sistema Internacional y el factor por el que se debe multiplicar cuando se utiliza cada uno de ellos.

Por ejemplo, 3 kg equivalen a $3 \cdot 10^3 g$, lo que es igual a 3000g. También, 5 µm equivalen a $5 \cdot 10^{-6} m$, es decir 0,000005 m.

Actividad 2

Para cada caso, indica cuál es la expresión donde se use correctamente el símbolo de la unidad.

a) 20 segundos:	20 seg.	20 segs.	20 s
b) 10 kilogramos:	10 kg	10 kgs	10 kg.
c) 150 kilómetros:	150 kms	150 km	150 kmt.
d) 250 gramos:	250 g	250 grs.	250 gs
e) 1 metro:	1 mt.	1 m.	1m
f) 298 kelvin:	298 Kv.	298 k	298 K

Actividad 3

Completa la siguiente tabla:

Magnitud	Valor	Prefijo	
	А	75mA	
Longitud	6 374 000 m	6,374	
	8 250 000 000 kg	g	
Tiempo	S	470 μs	

Conversión de Unidades

Regla de tres simple:

- Se debe conocer el factor de conversión entre ambas unidades. (Tabla de múltiplos y sub múltiplos o Tablas de conversiones)
- Se escriben los datos de forma ordenada, identificando la incógnita
- Se resuelve, siguiendo el orden de operación para una proporción directa.

Ejemplo

Convertir 100km a m

Factor de conversión: 1km = 1000m

Resolución:

$$X = \frac{100km \cdot 1000m}{1km} = 100\ 000m$$

Conversión de Unidades

Factor de Conversión o "Factor Unitario":

- Se debe conocer el factor de conversión entre ambas unidades.
 (Tabla de múltiplos y sub múltiplos o Tablas de conversiones)
- Se escribe el dato original en forma de fracción.
- Se multiplica el factor original, por una fracción que permita simplificar las unidades a conveniencia.
- Resulta más práctico para conversión de múltiples unidades

Conversión de Unidades

Factor de Conversión o "Factor Unitario":

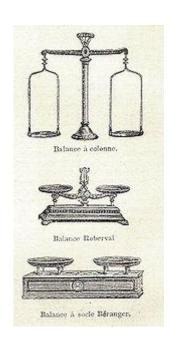
Ejemplo

Convertir
$$100\frac{km}{h}$$
 a $\frac{m}{s}$ \rightarrow Factores de conversión:
$$1km = 1000m$$

$$1h = 60min$$

$$1min = 60s$$

Resolución:


$$\frac{100 \, km}{1 \, h} \cdot \frac{1000 \, m}{1 \, km} \cdot \frac{1 \, h}{60 \, min} \cdot \frac{1 \, min}{60 \, s} \cong 27,78 \frac{m}{s}$$

INSTRUMENTOS DE MEDICIÓN

INSTRUMENTOS DE MEDICIÓN

Un instrumento de medición es un aparato que nos permite comparar la dimensión de un objeto con un valor de referencia denominado patrón.

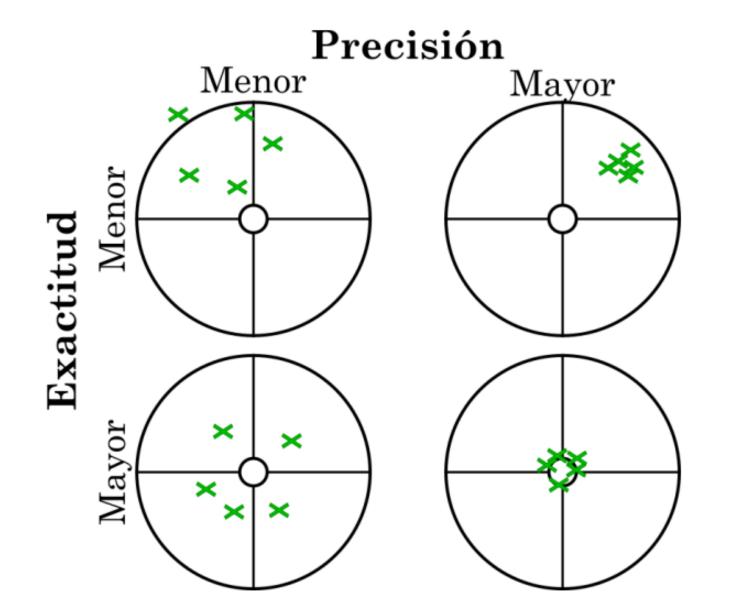
EXACTITUD

Es la capacidad de un instrumento de dar un valor del objeto lo mas cercano a la medida "real".

PRECISIÓN

Capacidad de un instrumento de dar el mismo resultado cuando se mide el mismo objeto varias veces.

SENSIBILIDAD

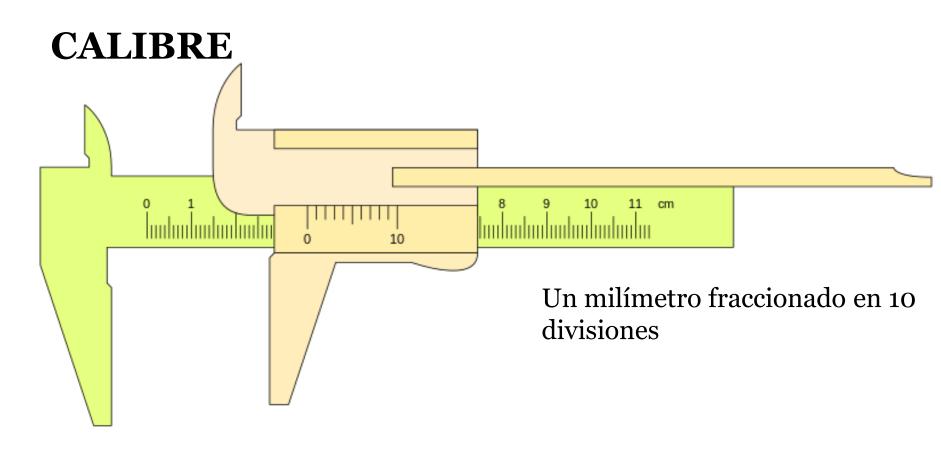

Es una relación entre la dimensión de la escala del instrumento y la variación real de la magnitud a medir.

APRECIACIÓN

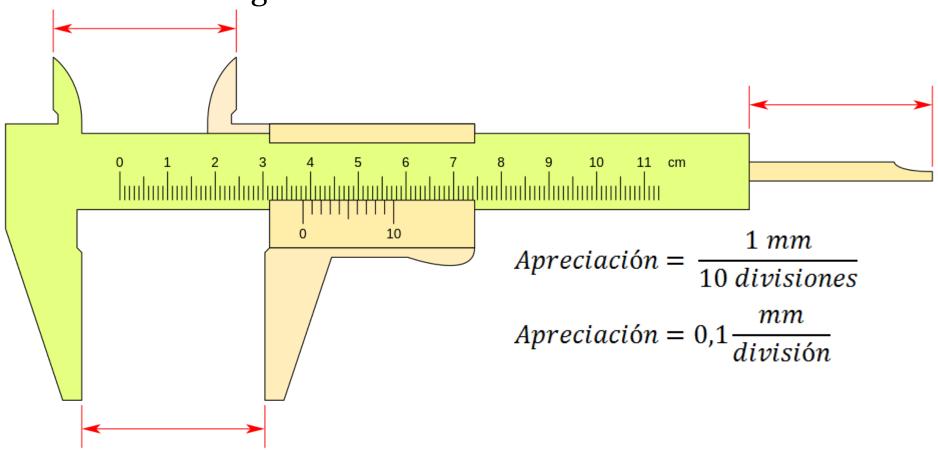
Es el menor valor que permite medir un instrumento, según su escala predeterminada.

ESTIMACIÓN

Es el menor valor que permite medir un instrumento, aproximando valores intermedios entre las divisiones de la escala.


APRECIACIÓN

Es el menor valor que puede medir un instrumento


$$Apreciación = \frac{(Valor\ mayor - valor\ menor)}{n\'umero\ de\ divisiones}$$

APRECIACIÓN

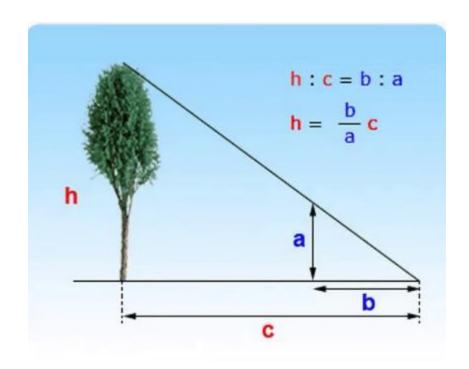
APRECIACIÓN

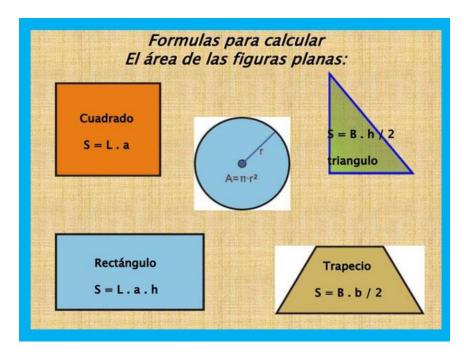
<u>Apreciación del calibre</u>: un milímetro dividido el número de divisiones de la regla móvil

INCERTEZAS EN LAS MEDICIONES

¿COMO MEDIMOS?

Medición directa: es aquella que se realiza utilizando un instrumento aplicado al objeto cuya magnitud se desea medir





¿COMO MEDIMOS?

Medición indirecta: es la que se obtiene de la relación entre dos o más mediciones directas, aplicando algún principio físico o matemático. Esta forma de medición se realiza cuando es difícil comparar el objeto a medir con un patrón de la misma naturaleza

¿Qué es el error?

- En el lenguaje cotidiano error está asociado a una equivocación.
- El error es la diferencia existente entre el valor medido y el valor real del objeto medido.
- En ciencia o ingeniería el error está asociado al concepto de incertidumbre o incerteza.
- La incerteza en una medición está asociada a la duda respecto del valor obtenido en esa medición. Se define como la cuantificación de la duda en una medición. Se relaciona con la calidad de la medición.
- En adelante, utilizaremos los términos INCERTEZA y ERROR, como sinónimos

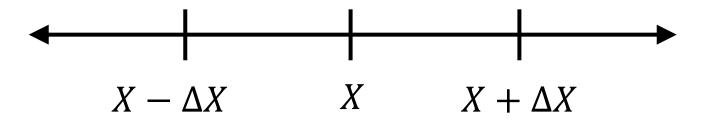
CLASIFICACIÓN DE ERRORES

ERRORES SISTEMÁTICOS:

- Son los que se cometen en un solo sentido "por exceso o por defecto".
- Suelen deberse a imprecisiones en los procesos de medición.
- Pueden determinarse y compensarse en los cálculos.

ERRORES ACCIDENTALES:

- Son debidos a causas fortuitas y variables que no pueden preverse.
- No puede establecerse si son por exceso o por defecto.


ERRORES ESTADÍSTICOS:

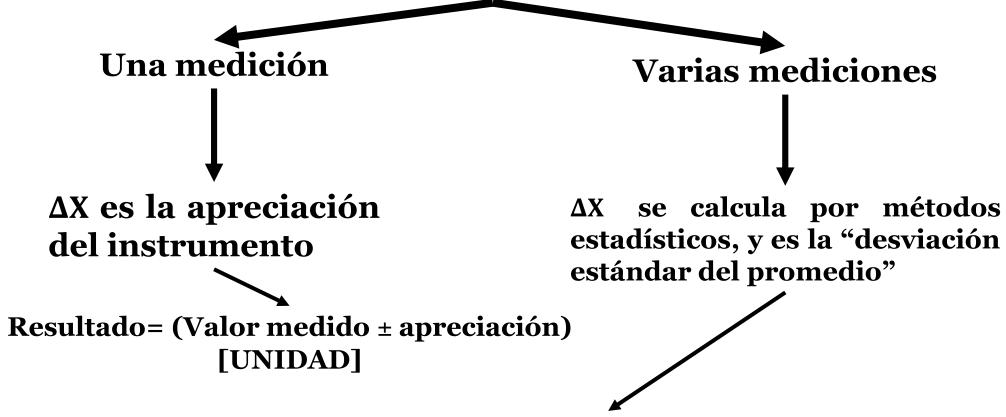
- Se deben a la probabilidad de incerteza propia de cada proceso de medición.
- Se pueden calcular e informar junto con el resultado de la medición

¿CUÁNTO ERROR COMETEMOS AL MEDIR?

Incerteza absoluta (ΔX): es la diferencia entre cada medición y el valor "verdadero" o valor medido.

Los errores absolutos califican cada medida, y representan el intervalo alrededor del valor de X, dentro del cual esperamos que se encuentre el verdadero Valor.

¿CUÁNTO ERROR COMETEMOS AL MEDIR?


Incerteza relativa (ε): es el cociente entre la incerteza absoluta (en valor absoluto) y el valor medido.

El error relativo califica el proceso de medición, y además permite comparar dos o más procesos de medición distintos y dos resultados de distinta magnitud. Representa el error cometido por cada unidad de la cantidad medida.

$$oldsymbol{arepsilon} = rac{\Delta X}{X}$$

$$X = (X \pm \Delta X)$$
 [UNIDAD]

Medición directa

Resultado= (Valor medido ± Desv. estándar) [UNIDAD]

Resultado de la medición: Estará dado por el valor obtenido (medido o calculado) +/- un valor de incertidumbre dado por el error absoluto

$$X = (X \pm \Delta X)$$
 [UNIDAD]

Resultado= (Valor medido/calculado ± incerteza absoluta) [UNIDAD]

Mediciones directas

Una medición

Resultado= Valor medido ± Apreciación del instrumento

$$X = (X \pm \Delta X)$$

Varias mediciones

Resultado= Promedio ± Desviación estándar del promedio

$$X=(\overline{X}\pm\sigma_{\overline{X}})$$

$$\bar{X} = \frac{\Sigma(x_i)}{N} \qquad \qquad \sigma_{\bar{X}} = \sqrt{\frac{(\Sigma(\bar{X} - x_i)^2)}{N(N-1)}}$$

Mediciones indirectas

PROPAGACIÓN DE ERRORES

En una adición o sustracción El ERROR ABSOLUTO del resultado es igual a la suma de los errores absolutos de los sumandos

$$\Delta X = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n$$

En un producto o cociente

El ERROR RELATIVO del resultado es igual a la suma de los errores RELATIVOS de los componentes.

$$\varepsilon = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n$$

Mediciones directas

ACTIVIDAD: Completa la siguiente tabla con mediciones realizadas en clase.

INSTRUMENTO (unidad de medida)	Incerteza absoluta ΔX	Medida X	Expresión de la medida X ± ΔX	Incerteza relativa ε	Incerteza relativa porcentual ε %
Regla graduada (cm)	0,5 cm	220,0 cm	(220,0±0,5)cm		0,23
Transportador					
()					
Cronómetro					
()					