LOGICA SIMBOLICA

- Reglas de Inferencia
- Funciones proposicionales.
- Proposiciones singulares y generales.
- Cuantificadores: existencial y universal.

RAZONAMIENTO DEDUCTIVO VÁLIDO

En matemática interesa el tipo de razonamiento llamado DEDUCTIVO.

Un razonamiento es deductivo sii las premisas son evidencias de la verdad de la conclusión, es decir, si p₁;p₂;...; p_n son verdaderas, entonces q es verdadera.

Llamamos razonamiento a un par ordenado $(\{p_i\}, q)$ siendo $\{p_i\}$ un conjunto finito de proposiciones, llamadas premisas y q una proposición, llamada conclusión; respecto de la cuál se afirma que deriva de las premisas.

Un razonamiento deductivo es válido si no es posible que las premisas sean verdaderas y la conclusión falsa. De un razonamiento no se dice que es V o F sino que es válido o no.

REGLAS DE INFERENCIA

Llamamos REGLA DE **INFERENCIA** a todo esquema válido de razonamiento, independientemente de la V o F de las proposiciones componentes. De este modo, toda regla de inferencia es una tautología.

Un razonamiento deductivo es válido cuando el condicional, cuyo antecedente es la conjunción de las premisas y el consecuente la conclusión, es tautológico.

ALGUNAS REGLAS DE INFERENCIA...

1. Ley del Modus Ponens

Si $p y p \rightarrow q$, entonces q.

0

 $p \rightarrow q$

Q

Ejemplo:

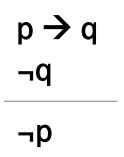
Pienso

Si pienso → existo

Existo

REGLAS DE INFERENCIA

2. Ley del Modus Tolens



No pienso

La proposición
$$[(p \rightarrow q) \land \neg q] \rightarrow \neg p$$
 es una tautología

REGLAS DE INFERENCIA

3. Ley del Silogismo Hipotético

$$p \rightarrow q$$
 $q \rightarrow r$

$$q \rightarrow r$$

Ejemplo:

Si pienso → existo

Si existo → respiro

Si pienso → respiro

La proposición $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ es una tautología

REGLAS DE INFERENCIA ALGUNOS EJEMPLOS PARA ANALIZAR..

El condicional $[(p \rightarrow q)_{\land} (q)] \rightarrow p$ ¿es una tautología?

	17 (1/1 1 0	G	
1.Si pienso → existoNo existo	_	2. Si pienso → existo No pienso	
No pienso		¿No existo?	
3.		4.	
Si pienso, existo		Si pienso → existo	
Existo		Pienso	
¿Pienso?		Existo	

MÉTODOS PARA DETERMINAR LA VALIDÉZ DE UN RAZONAMIENTO

MÉTODO POR ANALOGÍA

Justificar la validez del razonamiento:

S

$$p \rightarrow q$$

$$\neg r \rightarrow \neg q$$

$$\neg (\neg p \land \neg t)$$

$$t \rightarrow s$$

$$\neg r$$

S

$$\begin{array}{c} p \rightarrow q \\ \hline q \rightarrow r \\ \hline p \rightarrow r \end{array} \text{ (por ser contrarrecíproco)} \\ \end{array}$$

p v t (por ser negación de la conjunción)
 Además, la última premisa ¬r es V, por tanto r es F.

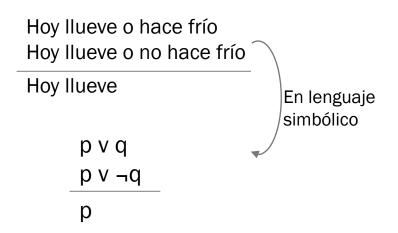
Y como p → r es V, p debe ser F. Si p es F, para que p v t sea verdadera, t debe ser V.

Si t es V, por ley del Modus Ponens resulta s V.

MÉTODOS PARA DETERMINAR LA VALIDÉZ DE UN RAZONAMIENTO

MÉTODO POR TABLAS DE VALORES DE VERDAD

Justificar la validez del razonamiento cuyas premisas son:



Haciendo la tabla de verdad obtenemos:

p	q	¬q	pvq	ри¬q	(p v q)∧(p v¬q)
V	V	F	V	V	V
V	F	V	V	V	V
F	٧	F	V	F	F
F	F	V	F	V	F

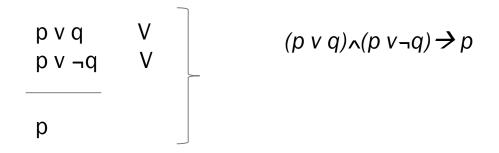
PROPOSICIONES EQUIVALENTES

Existe una tautología

∴El razonamiento es válido

MÉTODOS PARA DETERMINAR LA VALIDÉZ DE UN RAZONAMIENTO

Si queremos justificar el razonamiento anterior por analogía , ¿cómo podríamos hacerlo?



REGLAS DE INFERENCIA	SIMBOLISMO	REGLAS DE INFERENCIA	SIMBOLISMO
1.Modus Ponens (M.P.)	$\frac{p \rightarrow q}{p}$	6. Dilema Constructivo (D.C.)	$(p \rightarrow q) \land (r \rightarrow s)$ $\frac{p \lor r}{q \lor s}$
2. Modus Tollens (M.T.)	$ \begin{array}{c} p \rightarrow q \\ \neg q \\ \hline \neg p \end{array} $	7. Absorción (Abs.)	$\frac{p \to q}{p \to p \land q}$
3. Silogismo Hipotético (S.H.)	$ \begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ p \rightarrow r \end{array} $	8. Simplificación (Simp.)	<u>p^d</u>
4. Silogismo Disyuntivo (S.D.)	p v q <u>¬p</u> q	9. Adición (Ad.)	<u>p</u> p v q
5. Conjunción (Conj.)	p p∧q		

Hemos visto el hecho de que los enunciados que contienen una variable como x no necesariamente son proposiciones. Por ejemplo, la frase:

"el número x+2 es un entero par"

No necesariamente es una oración verdadera o falsa. No obstante, cuando un entero par sustituye a x, la proposición resultante es verdadera.

Nos referiremos a la frase "El número x+2 es un entero par" como una proposición abierta.

Definición 2.5:

Una frase declarativa es una proposición abierta si:

- 1. Contiene una o más variables;
- 2. No es una proposición;
- 3. Se convierte en una proposición cuando las variables que aparecen en ella se reemplazan por ciertas opciones permisibles.

Al tratar las proposiciones abiertas, usaremos la siguiente notación:

p(x) [o q(x), r(x), entre otras]

Ejemplo:

r(x): "el número x+2 es un entero par".

Las opciones posibles nombradas en la definición reciben el nombre de **universo** o **conjunto**.

Sea la proposición abierta, p(x) : x es impar

El enunciado "x es impar" no es una proposición ¿Por qué?

Sin embargo, para cada asignación dada a x, dicho enunciado es una proposición.

A las proposiciones de este tipo se las llama funciones o esquemas proposicionales

Una función proposicional en una variable o indeterminada x, es entonces, toda oración en la que figura x como sujeto u objeto directo, la cual se convierte en proposición para cada especificación de x.

Algunos ejemplos..

p(-4): -4 es impar F p(5): 5 es impar V

También podemos definir funciones proposicionales con dos variables o indeterminadas:

p(x, y): "x es divisor de y"

Al igual que en el caso anterior, si x e y son enteros, p (x, y) no es proposición ya que no podemos afirmar la verdad o falsedad del enunciado. Pero para cada par de valores se obtiene un conjunto de proposiciones V o F, dependiendo de los valores asignados a cada variable:

p (-2, 6): -2 es divisor de 6 V p (12, 6): 12 es divisor de 6 F

A partir de **funciones proposicionales**, es posible obtener proposiciones generales mediante un proceso llamado **CUANTIFICACIÓN**.

Asociados a la indeterminada x, introducimos los símbolos $\forall x$ y $\exists x$, llamados cuantificadores **universal** y **existencial** en x. Las expresiones:

$$\forall x: p(x) - para\ todo\ x\ se\ verifica\ p(x) - \exists x/p(x) - existe\ x\ tal\ que\ se\ verifica\ p(x) -$$

corresponden a una función proposicional p(x) cuantificada universal, en el primer caso, y existencialmente, en el segundo.

Una función proposicional cuantificada adquiere el carácter de proposición.

Retomemos el ejemplo trabajado: "Todos los números enteros son impares" es una proposición falsa.

Se puede expresar también, como: "cualquiera sea x, x es impar"

" $\forall x$: x es impar"

Si cuantificamos existencialmente la misma función proposicional obtenemos:

" $\exists x/x \ es \ impar$ "

0 sea:

"Existe x tal que x es impar" "Existen enteros que son

impares"

El valor de verdad en este caso es Verdadero.

NEGACIÓN DE FUNCIONES PROPOSICIONALES CUANTIFICADAS

La negación de la proposición:

"Todos los enteros son impares"

Es:

"No todos los enteros son impares"

Simbólicamente, lo expresamos:

$$\exists x/\neg p(x)$$

Para negar una función proposicional cuantificada universalmente se cambia el cuantificador en existencial y se niega la función proposicional

NEGACIÓN DE FUNCIONES PROPOSICIONALES

La negación de la proposición:

"Existen enteros que son impares"

Es:

"No existen enteros impares"

Simbólicamente, lo expresamos:

$$\forall x: \neg p(x)$$

Para negar una función proposicional cuantificada existencialmente se cambia el cuantificador en universal y se niega la función proposicional

NEGACIÓN DE FUNCIONES PROPOSICIONALES

Sea la proposición:

"Todo el que la conoce, la admira"

O lo que es lo mismo:

"Cualquiera que se la persona, si la conoce, entonces la admira" Simbólicamente, lo expresamos:

$$\forall x \colon p(x) \Longrightarrow q(x)$$

Su negación, quedaría expresada:

$$\exists x/p(x) \land \sim q(x)$$

Que en palabras, se traduce:

"Hay personas que la conocen y no la admiran"

ACTIVIDAD

Establezca la validez de los siguientes argumentos:

1.
$$p \rightarrow q$$

$$\sim q$$

$$\sim r$$

$$\therefore \sim (p \lor r)$$

3.
$$p \rightarrow (q \rightarrow r)$$

$$\sim q \rightarrow \sim p$$

$$p$$

$$\therefore r$$

2.
$$p \rightarrow q$$

$$r \rightarrow \sim q$$

$$r \rightarrow \sim p$$

4.
$$p \land q$$

$$p \rightarrow (r \land q)$$

$$r \rightarrow (s \lor t)$$

$$- cs$$

$$\therefore t$$

